Call for applications for the 2nd generation of PhD students opens soon!
Research Area: Parasite Genetics and Adaptations
Leading PI: Melanie Rug
Characterisation of the virulence complex of the malaria parasite
Inside erythrocytes, Plasmodium refurbishes its host cell by inducing novel organelles, such as Maurer’s clefts, which are trafficking hubs for the export of virulence factors.In this project previously unrecognized proteins of the exported virulence complex will be analysed by state-of-the-art imaging tools, including correlative light and electron microscopy, in the human and murine model.
Research Area: Immune Responses
Leading PI: Brendan McMorran
Identification and analysis of platelet polymorphisms associated with malaria susceptibility
In the project the seminal finding that platelets are instrumental in killing of Plasmodium-infected erythrocytes permits the functional testing of whether candidate polymorphisms in platelet-associated genes cause malaria susceptibility. This study encompasses genotyping in patient cohorts and cell culture assays as proxy for platelet functions in infected patients. Sporozoite-based immunization strategies are presently one of the most promising roads towards an efficacious malaria vaccine.
Research Area: Host Genetics and Responses
Leading PI: Gaétan Burgio
Unravelling the host response to malaria infection
The project will validate novel host resistance candidates by reverse genetics and analyse the effects of host genotypes on the response to artemisinin treatment and on parasite development and disease progression in a murine infection model.
Leading PI: Simon Foote
Screening for inhibitors of parasite growth using circular peptides and previously identified host targets
The concept of host directed therapy of Plasmodium blood infection will be experimentally tested for the first time in the project. Employing a circular peptide library, inhibitors of interactions between erythrocyte cytoskeletal proteins will be selected and further characterized in P. falciparum cell culture assays. A range of additional targets that were identified from in silico and forward genetics screens will be included in the screening pipeline.
There are currently no Berlin-based positions available. Please have a look at ANU's open positions, above!
The Australian National University
Research School of Biology
134 Linnaeus Way
Canberra - Acton ACT 2601
Australia
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin
Germany